Всего: 41 1–20 | 21–40 | 41–41
Добавить в вариант
В равнобокой трапеции большее основание вдвое больше каждой из остальных сторон и лежит в плоскости α. Боковая сторона образует с плоскостью α угол, синус которого равен Найдите 36sinβ, где β — угол между диагональю трапеции и плоскостью α.
Прямоугольный треугольник с катетами, равными 6 и вращается вокруг оси, содержащей его гипотенузу. Найдите значение выражения
где V — объём фигуры вращения.
В прямоугольнике ABCD выбраны точки L на стороне BC и M на стороне AD так, что ALCM — ромб. Найдите площадь этого ромба, если AB = 3, BC = 9.
Найдите площадь боковой поверхности правильной треугольной пирамиды, если длина биссектрисы ее основания равна и плоский угол при вершине
На стороне AB параллелограмма ABCD отмечена точка O так, что К плоскости ABCD из точки O восстановлен перпендикуляр SO длиной 8. Найдите значение выражения
где
— линейный угол двугранного угла BSCD, если
и известно, что площадь ABCD равна 45.
Секущая плоскость пересекает сферу по окружности, радиус которой равен 2. Если расстояние от центра сферы до секущей плоскости равно 4, то площадь сферы равна:
В основании пирамиды лежит прямоугольный треугольник, длина гипотенузы которого равна 6, острый угол равен 30°. Каждая боковая грань пирамиды наклонена к плоскости основания под углом, равным Найдите площадь боковой поверхности пирамиды.
Прямоугольный треугольник, длина гипотенузы которого равна 10, высота, проведенная к ней, равна 3, вращается вокруг прямой, перпендикулярной гипотенузе и проходящей в плоскости треугольника через вершину большего острого угла. Найдите объем V тела вращения и в ответ запишите значение выражения
ABCDA1B1C1D1 — куб, длина ребра которого равна Сфера проходит через его вершины В и D1 и середины ребер BB1 и CC1. Найдите площадь сферы S, в ответ запишите значение выражения
Диаметр окружности пересекает хорду под углом 60° и точкой пересечения делит ее на отрезки длиной 2 и 12. Найдите квадрат радиуса окружности.
На рисунках 1 и 2 изображены правильная треугольная призма ABCA1B1C1 и ее развертка. Найдите площадь боковой поверхности призмы, если длина ломаной ACA1 равна и точки A, C, A1 лежат на одной прямой (см. рис. 2).
В четырехугольнике KMNL, вписанном в окружность, и длины сторон KL и LN равны радиусу этой окружности. Найдите значение выражения S2, где S — площадь четырехугольника KMNL.
Площадь прямоугольного треугольника равна 2, а радиус описанной около него окружности равен R. Укажите номер формулы, которой может выражаться сумма катетов a и b.
Основанием прямой треугольной призмы ABCA1B1C1 является треугольник АВС, в котором
а радиус описанной около него окружности равен
Найдите длину диагонали грани AA1C1C, если площадь этой грани равна